

The NA62 Experiment at CERN: Status of the Construction

NA62 aims to measure precisely $BR(K^+ \rightarrow \pi^+ \nu \nu)$ exploiting a novel in-flight technique

Ferdinand Hahn

NA62 Timeline

- 5 years of construction interleaved with a Technical Run in fall 2012
- In 2014 a first Run with full detector
- Plan 3 years of Physics data taking before LHC Long Shutdown 2 (LS2)

Civil Engineering Work

Construction of New Dump Tunnel (2010)

05/01/2013 - FH

Overview

Four Principles of the NA62 Detector

- 1. High Intensity and fast Timing
- 2. Low Mass Tracking
- 3. Hermetic Vetoing for Photons and Muons
- 4. Particle ID

NA62 NA62 Detector 2012 and 2014

Lau Gatignon

Measured Profiles

New Beam Line

Beam Parameter			
400 GeV/c	Protons on Target / s	1.1 x 10 ¹²	
75 GeV/c	Hadrons / s (6% Kaons)	750 x 10 ⁶	
75 GeV/c	K ⁺ decays / s	4.5 x 10 ⁶	

Parameter	Measured In TR	Simulated
2 RMS at CEDAR: X (mm)	28	27
2 RMS at CEDAR: Y (mm)	15	15
Intr. ang. spread X' (mr)	<80	70
Intr. ang. Spread Y' (mr)	<80	70
RMS at Big Fisc: X (mm)	12	12.6
RMS at Big Fisc: Y (mm)	14.6	15.1
RMS at MWPC: X (mm)	14.3	14.0
RMS at MWPC: Y (mm)	17.3	17.5
K ⁺ Rate (normalized to full intensity)	3.6 x 10 ⁶	4.5 x 10 ⁶

05/01/2013 - FH

KAON 2013

Four Principles of NA62

(1) High Intensity and fast Timing

4.5 10^{12} K⁺ decays/ year in fiducial region

KAON 2013

Four Principles of NA62

(2) Low mass tracking

GigaTracKer (GTK)

Overview

3 stations of Si pixel detectors

- Pixel size:
 - 300 x 300 μm^2 or 300 x 400 μm^2
 - 18'000 pixels/ station
 - 54'000 pixels grand total
- Thickness:
 - < 500 μm = 200(sensor) + 100(readout) + (≈) 150 Cooling
 - 0.5% of X₀ (per Station)
- Active area ≈ 60 (X) * 27 (Y) mm²
- Divided in 10 read-out chips

Beam Conditions:

- Overall Rate 750MHz
- In beam centre 140kHz/pixel

Meaures precisely Kaon

- Time ($\sigma_t \approx 200$ ps per station)
- Direction ($\sigma_{dx,dy} \approx 0.016$ mrad)
- Momentum (ΔP/P < 0.4%)

05/01/2013 - FH

GigaTracKer (GTK)

Artistic Cross-section

Straw Tracker

- Ultra-thin Straws installed in Vacuum
- 4 Chambers each measures 4 coordinates (views)
- High accuracy (130µm per View)
- High efficiency

X-section of one View

Straw Tracker

Straws installed inside vacuum tank

- Straws: 2.1m long and φ_i =9.8mm;
- Straw Material:
 - 50 nm Cu + 20 nm Au on 36 μm of Mylar
- Total 7168 Straws (4x4x4x112)
- Gas: Ar/CO₂(70/30)
- Material Budget of the Spectrometer: 1.8% of X₀

Straw Tracker

Four Principles of NA62

(3) Hermetic vetoing for photons (<50mrad) and muons

- Inefficiency for rejection of the π^0 must be at the level of 10^{-8}
- Photon detection inefficiencies between 10⁻⁴ and 10⁻⁵

Large Angle Veto (LAV)

05/01/2013 - FH

NA62 Liquid Krypton Calorimeter

05/01/2013 - FH

NA62 LKR CREAM Readout

Small Angle Vetos (SAV)

Two Shashlik Calorimeters

IRC (lead absorbers)

4 PMT's Shashlik

Cavern Wall MUV3 MUV1 MUV2 **Dump Tunnel** IRC Т SAC R Liq. Krypton Magnet 0 Calorimeter N 240 m 241 m 242 m 243 m 244 m 246 m 246 m 247 m 248 m 2**55** m

SAC

05/01/2013 - FH

KAON 2013

Two functions: μ veto and hadron energy

- Online
 - Muon Veto => MUV3
 - Requires very fast detector / time resolution $\sigma_T \le 0.5$ ns
 - Reduce L0 trigger factor >10
 - 10 MHz Muon rate + coincidence window $\leq 5\sigma_{T} \Rightarrow$ dead time < 3%
 - Hadron Trigger (optional)
- Offline:
 - Muon identification
 - Energy of hadron showers
 - Target muon < inefficiency 10⁻⁷ (together with RICH)

Detector Layout

- MUV 1 + 2 iron/scintillator sandwich
 - 24(MUV1) and 22(MUV2) detection layers
 - Alternating horizontal and vertical scintillator strips
 - PMT's
- MUV3 (fast veto trigger)
 - After 80 cm of iron
 - Fast muon trigger
 - Tiles scintillators + PMT

Four Principles of NA62

(4) Particle ID

KTAG (CEDAR)

Overview

- The **KTAG** is a CERN CEDAR West with:
 - extended external optics
 - new photo-detectors
 - new readout
- Up to 512 PMT's

05/01/2013 - FH

NA62 RICH Detector

Winston Cones and quartz windows

05/01/2013 - FH

Mirror assembly

Mirror Assembly

- 18 hexagonal mirrors
- 2 half mirrors around the beam pipe.
- Online Alignment:

The inclination of the 18 hexagonal mirrors is remotely adjustable using piezo-micrometric actuators

Mirror Parameters + Quality:

- Spherical mirrors f= 17±0.1 m
- Reflectivity > 90% (195 650nm)
- $D_0 \leq 4mm$ (circle which collects 90% of the reflected light.)

Trigger and Data Acquisition

NA62 \Lambda

L0 trigger

- rate $\leq 1 \text{ MHz}$
- Min Δt for L0 = 75ns
- Synchronized L0 accept fixed latency (1-10ms)

L1 trigger

- rate ≤ 100 kHz
- Max. latency 1 s

L2 trigger

- rate ≤ 15 kHz
- Spill length ≈10 s

- The Construction and Installation of the NA62 detectors is in full swing.
- The Technical Run in fall 2012 was very successful and the experience extremely valuable for the collaboration
- We look forward to take data with the full detector in fall 2014.

Thank you

Additional Material

Schematic Visualisation

Compare NA48 versus NA62

Spectrometer Material $\approx 2.8\%$ of X₀ (without beam pipe)

The Straw Trackers operated in vacuum will enable us to:

- Remove the multiple scattering due to the Kevlar Window •
- Remove the acceptance limitations due to the beam-pipe •
- Remove the helium between the chambers

Ø 2-3m

10 m

11 m

- Ultra-thin Straws installed in Vacuum
- 4 Chambers each measures 4 coordinates (views)

Vacuum Tank

High accuracy (130µm per View)

60m Decay Region

High efficiency

14 m

NA62 Illustrations of the 2012 Layout

New requirements:

- Photon detection inefficiency < 10⁻⁵ for energies > 35 GeV
- Rate capability increased from to 1 MHz

NA62 TDAQ - OVERVIEW

Precision of the Straw positioning

Layer 2, Module 3

GTK: Test Beam Analysis

- Refined analys confirms a resolution of better than 200 ps per hit for sensor bias voltages higher than 300 V
- Time-walk correction and alignment procedures have been validated with real data
- Clear dependence of time resolution on sensor bias voltage
- The operation at 300 V overdepletion is mandatory
- Paper on test-beam results under preparation

150

100

200

300

250

350

400

V_{bias} [V]

290

95

One CHANTI station

The CHANTI detects the charged particles produced by inelastic interactions in GTK3

×

NA62 The NA62 Collaboration

