

The NA62 Experiment: Prospects for the $K^+ \rightarrow \pi^+ \nu \nu$ Measurement

Giuseppe Ruggiero (CERN) Kaon 2013 Ann Arbor, 01/05/2013

NA62 _

Outline

- Theory (short reminder)
- × Principles of NA62
- Sensitivity Studies
- ★ Results from the 2012 Technical Run
- Conclusions

CÉRN

The $K \rightarrow \pi v v$ decays: a theoretical clean environment

● FCNC loop processes: s→d coupling and highest CKM suppression

- Very clean theoretically: SD contributions dominate.
 - top quark contribution computed at NLO QCD and 2-loop EW corrections;
 - c quark loop contribution computed at NNLO QCD and NLO EW corrections;
 - correction for LD contributions;
 - hadronic matrix element related to the precisely measured BR(K⁺ $\rightarrow \pi^0 e^+ \nu$).
- BR proportional to $|V_{ts}^*V_{td}|^2 \rightarrow$ theoretical clean V_{td} dependence
- SM predictions [Brod, Gorbahn, Stamou, Phys. Rev. D 83, 034030 (2011)]:
 - BR($K_L \rightarrow \pi^0 \nu \nu$) = (2.43 ± 0.39 ± 0.06)×10⁻¹¹
 - $BR(K^+ \rightarrow \pi^+ \nu \nu) = (7.81 \pm 0.75 \pm 0.29) \times 10^{-11}$ Parametric error Pure theoretical error, dominated by V_{cb} , ρ mostly LD corrections

NA62 🖉

NA 62

Experimental Measurements and NP Sensitivity

- Sensitive NP probe complementary to LHC
- Best probe of non-MFV (G.Isidori ESPP Open Symposium)
 - E.g. non-MFV in up-squarks trilinear terms.

- Present experimental results:
 - BR(K⁺ $\rightarrow \pi^+ \nu \nu$) = (1.73 $^{+1.15}_{-1.05}$) x 10⁻¹⁰ [E787, E959]
 - BR($K_L \rightarrow \pi^0 \nu \nu$) < 2.6 x 10⁻⁸ [E391a]

- Upcoming experiments:
 - NA62 @ CERN
 - KOTO @ JPARC
 - ORKA @ Fermilab

The NA62 Experiment for $K \rightarrow \pi v \bar{v}$

- **Goal:** 10% precision branching ratio measurement of $K^+ \rightarrow \pi^+ \nu \nu$
 - O(100) SM K⁺ $\rightarrow \pi^+ \nu \nu$ events (2 years of data)
- Requirements

NA62 🗛

- Statistics: BR(SM) ~ 8×10^{-11}
 - K decays (2 years): 10¹³
 - Acceptance: ~10%
- Systematics:
 - >10¹² background rejection (<20% background)
 - <10% precision background measurement
- Technique
 - "High" momentum K⁺beam

Kaon intensity Signal efficiency

Signal purity Detector redundancy

Decay in flight

CERM

- Proton on target: 1.1×10^{12} / s
- P secondary charged beam 75 GeV/c ٩
- Momentum bite 1%
- Angular spread in X and Y < 100 μ rad

- Size @ beam tracker: 5.5 x 2.2 cm²
- Rate @ beam tracker: 750 MHz
- 6% K⁺ (others: π^+ , proton) ٩
- Rate downstream 10 MHz (K⁺ decay mainly)
- K decay rates / year: 4.5×10^{12} ٩ (60 m decay volume)

Signal and Background

• Signal

NA62 🖉

- Kinematic variable: $m_{miss}^2 = (P_K P_{\pi^+})^2$
- Background
 - 1) K⁺ decay modes 2) Accidental single track matched with a K-like track
- Kaon Decays

- Accidental single tracks
 - Beam interactions in the beam tracker
 - Beam interactions with the residual gas in the vacuum region.

CERM

 P_{π}

 P_{v}

 $\mathbf{P}_{\mathbf{K}}$

 $\theta_{\pi F}$

P,

- One reconstructed track in the Straw (π^+ track)
- Signal in RICH compatible with only 1 π⁺ hypothesis
- Signal in Calorimeters (CHOD, LKr, MUV1,2,3) compatible with only 1 π⁺ hypothesis
- No clusters in LKr compatible with *γ* hypothesis
- No signals in LAVs, IRC, SAC compatible with γ hypotesis

- At least one track in Gigatracker matched in space and time with the π⁺ track (K⁺ track) and compatible with the beam parameters (75 GeV/c)
- No extra activity in CHANTI compatible with a MIP signal
- Signal in KTAG compatible with a K hypothesis
- Z vertex in the first 60 m of the decay volume

$15 < P_{\pi^+} < 35 \text{ GeV/c}$

Estimation of the $K^+ \rightarrow \pi^+ \pi^0(\gamma)$ background

Branching Ratio = ~21%

- Evaluation of the effect of the kinematic cuts using the simulation
- Evaluation of the single *γ* detection efficiency:
 - Intrisinc inefficiencies of the calorimeters from test-beam and NA48/NA62 data
 - Effect of the material in front of the calorimeter studied on simulation
 - Separation between π^+ cluster and γ cluster @ LKr taken into account
- Evaluation of the π^0 rejection power:
 - Single γ detection inefficiency applied parametrically to the γ 's of $\pi^+\pi^0$ events
- Factorization of the kinematic and photon rejection
- Contribution from the radiative tails:
 - Evaluated by considering only the gaussian resolution of the tracking systems
- Result: 10% + 3% (radiative) (cut & count analysis without any optimization)
- Method to measure on data the γ detection efficiency from $K^+ \rightarrow \pi^+ \pi^0$
- Kinematic rejection can be measured on data from $K^+ \rightarrow \pi^+ \pi^0$ reconstructed by using the LKr
- Strongly momentum and Z vertex dependent.

NA62

CÉRN

• Cut on m_{miss}^2

NAGZ A

- Source of inefficiency:
 - Tails due to the multiple scattering
 - Pileup in the Gigatracker.

- Resolution:
 - $\sigma(P_K)/P_K = 0.2\%, \sigma\left(\frac{dX,Y}{dZ}\right)_K = 15 \,\mu rad$
 - $\sigma(P)/P = 0.32\% \oplus 0.008\% P [GeV/c]$

•
$$\sigma\left(\frac{dX,Y}{dZ}\right) = 20 - 50 \,\mu rad$$

• Rejection factor: 5x10³

Kinematics and Pileup

- CERN
- Different rate in Gigatracker (750 MHz) and in the downstream detectors (10 MHz)
- Possible wrong assignment of the K⁺ measured in the Gigatracker to the π^+ downstream
- Factor 3 increase in $\sigma(m_{miss}^2) \rightarrow \text{loss of kinematic rejection power}$
- Exploit spatial and timing correlations between the upstream and downstream detectors.
- Precise timing required between K^+ and π^+
 - Gigatracker: $\sigma(t) = 200 \text{ ps} / \text{station}$
 - KTAG: $\sigma(t) = 100 \text{ ps}$
 - RICH: $\sigma(t) < 100 \text{ ps}$

- Mis-matching probability < 1%, further reducible after analysis optimization.
- 50% contribution to the inefficiency of the kinematic rejection.

NA62 A

Photon rejection

- $P_{\pi^+} < 35 \text{ GeV/c} \rightarrow E_{\pi^0} > 40 \text{ GeV in } \text{K}^+ \rightarrow \pi^+ \pi^0$
- Requirement O(10⁸) on π^0 rejection
- Hermeticity:

NA62 🖉

- LKr, IRC, SAC detect the photon in the forward region (0 to 8.5 mrad full coverage)
- LAV detect the photons at high angle (coverage up to 50 mrad down to 100 MeV)
- Geometrical inefficiency:
 - 0.2% $\pi^+\pi^0$ with one γ out from the acceptance:
 - No events with the other photon in the LAV acceptance or outside
 - The other photon always in the forward region
 - $Z_{decay} < 65 \text{ m} \rightarrow \gamma$ in the forward region with energy > 1 GeV (mainly > 10 GeV)
- Intrinsic inefficiency of the LKr:
 - Measured on NA48 data by selecting $K^+ \rightarrow \pi^+ \pi^0$ events
 - It fits the requirement on the overall π⁰ detection inefficiency
 - Can be monitored with enough precision along the data taking.

CERN

Effect of the material on the photon rejection

- Studied using a detailed GEANT4 simulation
- Dominant effect for photons in SAC: equivalent inefficiency 7.9x10⁻⁴ (conversions in straws)
- Important effect for photons in IRC: equivalent inefficiency 3.6x10⁻⁴ (γ-nuclear interactions with the beam pipe)
- Negligible effect for photons in LKr and LAVs.

NA62

Estimation of the $K^+ \rightarrow \mu^+ \nu(\gamma)$ background

Branching Ratio = ~64%

- Evaluation of the effect of the kinematic cuts using the simulation
- Calorimeters for π^+ identification and $\mu \pi$ separation
- RICH for $\mu \pi$ separation
- Factorization of the Kinematic rejection factor, the Particle ID from Calorimetry and Particle ID from RICH assumed.
- Contribution from the radiative tails evaluated

- Result: 2.2% + 1% (radiative) (cut & count analysis without any optimization)
- The RICH (Calorimeters) can be used to select a pure sample of $K^+ \rightarrow \mu^+ \nu$ in order to measure on data the rejection power from the Calorimeters (RICH).
- The RICH can be used to cross check the momentum measured in the spectrometer

$K^+ \rightarrow \mu^+ \nu$ Kinematics

• Cut on m_{miss}^2

NA62 🗛

• Analytical relation between m_{miss}^2 and P_{μ}

• P_{track}< 35 GeV/c crucial to enhance the kinematic rejection power

- Source of inefficiency:
 - Tails due to the multiple scattering
 - Pileup in the Gigatracker.

- Rejection factor 1.5×10⁴
- Pileup contribution marginal

CERN

Calorimetry: Particle ID

• LKr: em / hadronic clusters discrimination

- MUV1,2: μ / π discrimination
- MUV3: pure μ counter (<% inefficiency)
- Limitation: muon catastrophic energy loss
 - Ranging out from MUV1,2 (worst case 2 / 15 GeV)
 - Inefficiency 10⁻⁵ (effect studied in detail for R_K measurement)
 - Coarse Z segmentation of the calorimetric system may provide additional rejection power

Clear MIP signal

NA6Z A

CERM

Particle ID with RICH

• $\pi - \mu$ separation measured during a test beam of a full length RICH prototype [NIM A 621 2010]

- $P_{\pi} < 35 \text{ GeV crucial}$
- Ne Cerenkov threshold forces a requirement $P_{\pi} > 15 \text{ GeV}$
- Time resolution < 80 ps [NIM A 593 2008]
- The RICH provides an even better π e separation

NA62

CERN

Estimation of $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ Background

Branching Ratio = ~5.6%

- Evaluation of the effect of the kinematic cuts using the simulation
- Evaluation of the effect of the cuts against extra charged particles in the final state
 - RICH

NA62 \Lambda

- LAVs
- Forward calorimeters (LKr, MUV1,2, IRC)
- Straws
- Factorization of the cut on m_{miss}^2 and the multiplicity cuts.
- **Result:** 1 2% (cut & count analysis without any optimization)
- High level of redundancy in the multplicity analysis
- Similar study performed for $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ (Branching Ratio ~4.3×10⁻⁵)
- Contribution <2%.

CÈRN

$K^+ \rightarrow \pi^+ \pi^+ \pi^-$ Kinematics

- 1 track reconstructed in straws
- Cut on m_{miss}^2
- $P_{track} > 15 \text{ GeV/c}$
- Overall rejection factor 1.5 × 10⁶
 - Cut on m_{miss}^2 and P_{track} strongly correlated
- Source of inefficiency:
 - Tails due to the multiple scattering
 - Marginal effect from the pileup in the Gigatracker.
- Topology of the residual events:
 - One good π^+ reconstructed in straws
 - The other π⁺ and the π⁻ in the beam hole of the first 2 straw chambers.

$K^+ \rightarrow \pi^+ \pi^+ \pi^-$ Multiplicity

- Full geometrical coverage downtream to the magnet of the spectrometer against π⁻ up to 65 GeV/c
 - 20 m lever arm between the magnet of the straw spectrometer and the last straw chamber
 - Lateral displacement of the detectors following the path of the positive particles
- Rejection methods (simplified scheme):
 - RICH to detect π with energy larger than 15 GeV/c
 - Forward Calorimetries (LKr, MUV1,2) to detect the π⁻ (eventually the π⁺) without energy constraint
 - CHOD and LKr to detect products of the nuclear interactions of the π^- in the material of the RICH
 - LAVs to detect low energy π⁻ decaying in muons or the products of the nuclear interactions of the π⁻
 - Extra segments in the straws to detect cases with a high energy π⁺ hitting the first two chambers, but continuing the path along the beam line downtream to the magnet.

• Overall rejection factor O(10⁶)

Background from Beam Interactions

- Decay in flight $\rightarrow < 1.5\% X_0$ on the beam from the tracker
- Kaon ID detector to suppress the contribution from the π^+ and p interactions (94%): KTAG
 - Requirements: $\sigma(t) = 100 \text{ ps}, \le \%$ level pion mis-tagging, > 95% K efficiency
- N₂ filled detector mounted on the beam line during the 2012 NA62 Technical Run.
- 50% of readout electronics mounted.
 - N-fold Coincidences VS Pressure

RMS 280 ps/coincidence

NA62 A

Background from Beam Interactions

Decay in flight \rightarrow < 1.5% X₀ on the beam from the tracker

- Beam interactions in the last Gigatracker Station
- Rejection power needed O(10⁹)
- Kinematic constraint from the reconstructed vertex \rightarrow rejection factor >10³
 - Fiducial volume 5 m downstream to the last Gigatracker station ($\sigma(Z_{vertex}) < 20$ cm)
- Detect multiplicity of the nuclear interaction → rejection factor >10⁵ (we look for at least 40 GeV)
 - Gigatracker itself, CHANTI, LAV + downstream detectors
- Ultimate limit: charge exchange processes $K^+n \rightarrow K_L p \& K_L \rightarrow e^-\pi^+\nu$
- Background to be measured on data. Strongly Z vertex dependent.

NA62 A

NA62 👌

Physics Sensitivity

Decay	evt/year
K ⁺ → π ⁺ νν [SM] (flux 4.5×10 ¹²)	45
$K^+ \rightarrow \pi^+ \pi^0$	5
$K^+ \rightarrow \mu^+ \nu$	1
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	<1
$K^+ \rightarrow \pi^+ \pi^- e^+ v$ + other 3 tracks decays	<1
$K^+ \rightarrow \pi^+ \pi^0 \gamma (IB)$	1.5
$K^+ \rightarrow \mu^+ \nu \gamma (IB)$	0.5
$K^+ \rightarrow \pi^0 e^+(\mu^+) \nu$, others	negligible
Total background	< 10

- Cut & count analysis without any optimization
 - e.g. Use of the m_{miss}^2 shape to add further signal/background discrimination
- The background must be measured with at least 10% precision
 - Background evaluation to be done on data

Results from the 2012 Technical Run

- **×** Goals:
 - **x** Analysis of the time and spatial correlation between the subdetectors.
 - **x** Estimation of the time resolution and efficiency of the subdetectors.
- ✗ Partial set − up:
 - ★ KTAG (50% PMs), 1 straw plane, CHOD, LKr (30% readout), MUV2, MUV3
- ***** Analysis Method: selection of $K^+ \rightarrow \pi^+ \pi^0$ events
 - Selection based on the Liquid Kripton Calorimeter
 - Photon tagging from the shape of the reconstructed clusters
 - ***** π^0 reconstruction:
 - **x** Z vertex from 2 γ on the LKr assuming m_{π^0}
 - × X and Y vertex from the assumed K direction
 - × K momentum (P_K) and divergence well defined by the beam line
 - * $P_{\pi^+} = (P_K P_{\pi^0}) \rightarrow P_{\pi^+}^2 = m_{\pi^+}^2 \text{ for } K^+ \rightarrow \pi^+ \pi^0$

Timing Correlations

NA62

25

CÈRN

The Final $K^+ \rightarrow \pi^+ \pi^0$ Sample

- ★ Exploit the timing and spatial correlations between the subdetectors to define a Kaon candidate, pion candidate and a muon candidate.
- **×** Signal region:
 - \star 0 < m_{miss}^2 < 0.04 GeV²/c⁴
- ★ Background @ % level
- × $\langle m_{miss}^2 \rangle = (0.0199 \pm 0.0005) \, GeV^2/c^4$
- * $\sigma(m_{miss}^2) = 3.8 \times 10^{-3} GeV^2/c^4$
- $m^2(\pi^+) = 0.0195 \ GeV^2/c^4$
- Time resolution: KTAG 150 ps, LKr 350 ps, CHOD 400 ps, MUV3 450 ps.
- ✗ KTAG efficiency about 87% (corresponding to 95% for a fully instrumented detector).
- 6% of events with a muon in-time (upper limit to the punch-through)

***** This analysis will be used in the final analysis to monitor the tails of the m_{miss}^2 reconstructed with the tracking system.

Conclusions

★ We look forward to the 2014 data

CÉRN